[CV] Facial Landmarks and Pose Estimation

Introduction

Facial Landmarks Localization,也称为Face Alignment,是人脸一个非常热门的方向,它的作用就是准确定位人脸关键点。Pose Estimation近年来也得到了越来越多的关注,常常被用于动作分析、以及抖音尬舞机等场景。因Facial Landmarks Localization和Pose Estimation有着比较大的相似性,所以本文将两者放在一起介绍。
关于Pose Estimation,目前学术界开源的算法库有如下几种:

@LucasXU注:本文长期更新。

Stacked hourglass networks for human pose estimation

Paper: Stacked hourglass networks for human pose estimation

说到Pose Estimation,就不得不提Hourglass Network,Hourglass Network是Pose和Face Alignment方向一个非常经典的工作,而且结构上也非常简洁,和常规的网络设计idea类似,依然是basic Hourglass module的重复叠加。

通过repeated pooling and upsampling,以及intermediate loss supervision,特征在不同scale得到了联合,从而可以最好地capture到身体不同部位的spatial relationship,Hourglass Network在相关benchmark上均取得了非常好的性能。

Stacked Hourglass Network的网络结构图如下:
Stacked Hourglass Network

Hourglass module的设计,和图像分割/Encode-Decoder结构中的上采样有点类似,但是这些结构通常encoder的结构比decoder的结构更加heavy,而Hourglass module中donwn-sampling structure和up-sampling structure是完全对称的。

Hourglass module

Network Architecture

Hourglass Design

Hourglass module的设计思想就是capture information at every scale的需求,local evidence对识别face/hand的feature很有用,而final pose estimation则需要full body understanding。Conv/Max-Pooling layers用于将feature下采样到low resolution,在每个Max-Pooling layer,网络开辟新的branch并应用更多的Conv于pre-pooled resolution。在获得最低resolution的feature后,网络开始up-sampling操作,并将across scale的feature进行组合。为了将across two adjacent resolution的信息进行整合,作者采用了nearest neighbor upsampling + Element-wise addition操作。在抵达网络output resolution时,应用两个consecutive rounds of $1\times 1$ Conv来产生最终的预测结果。网络的输出是一系列heatmap,每一个heatmap预测一个关节的presence at each and every pixel的概率。

Stacked Hourglass with Intermediate Supervision

因本身堆叠的重复结构,所以也可在中间层添加intermediate supervision,并且作者通过实验证明了,添加intermediate supervision能带来更好的效果提升。

Intermediate Supervision Accuracy

Local and global cues are integrated within each hourglass mod- ule, and asking the network to produce early predictions requires it to have a high-level understanding of the image while only partway through the full net- work. Subsequent stages of bottom-up, top-down processing allow for a deeper reconsideration of these features.

在训练阶段,MSE Loss应用于predicted heatmap和groundtruth heatmap (consisting of 2D gaussian centered on joint location)。

A Mean Squared Error (MSE) loss is applied comparing the predicted heatmap to a ground-truth heatmap consisting of a 2D gaussian (with standard deviation of 1 px) centered on the joint location. To improve performance at high precision thresholds the prediction is offset by a quarter of a pixel in the direction of its next highest neighbor before transforming back to the original coordinate space of the image.

Reference

  1. Newell, Alejandro, Kaiyu Yang, and Jia Deng. “Stacked hourglass networks for human pose estimation.” European conference on computer vision. Springer, Cham, 2016.
  2. Sun, Ke, et al. “Deep High-Resolution Representation Learning for Human Pose Estimation.” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019.
  3. Tompson, Jonathan J., et al. “Joint training of a convolutional network and a graphical model for human pose estimation.” Advances in neural information processing systems. 2014.

Powered by Hexo and Hexo-theme-hiker

Copyright © 2018 - 2024 LucasXU All Rights Reserved.

UV : | PV :