Introduction
医疗AI是现如今工业界和学术界都非常火热的方向,也是AI落地非常有价值的方向。因毕业论文需要涉及Medical Image Analysis相关的方向,所以本文旨在收集并梳理Deep Learning在Medical Image Analysis领域一些具有代表性的Paper以及Report。
@LucasXU注:本文长期更新。
CNN for Medical Image Analysis. Full Training or Fine Tuning?
Paper: Convolutional neural networks for medical image analysis: Full training or fine tuning?
Our experiments consistently demonstrated that
- the use of a pre-trained CNN with adequate fine-tuning outperformed or, in the worst case, performed as well as a CNN trained from scratch;
- fine-tuned CNNs were more robust to the size of training sets than CNNs trained from scratch;
- neither shallow tuning nor deep tuning was the optimal choice for a particular application; and
- our layer-wise fine-tuning scheme could offer a practical way to reach the best performance for the application at hand based on the amount of available data.
简而言之,尽管我们观念上可能认为ImageNet中的natural images data distribution(例如semantic meaning, image resolution等等)和医学图像的data distribution差距很大,fine-tune似乎不可行,但是作者做了3类实验(classification/detection/segmentation),发现从ImageNet上pretrain的模型到医学图像分析认为上进行fine-tune是可行的,而且会带来性能提升,收敛也更快。
Deep Learning for Skin Cancer Classification
Paper: Dermatologist-level classification of skin cancer with deep neural networks
Inception v3 (pretrained on ImageNet)用于做skin cancer classification,算法效果超过了人类医生。模型没什么太大的新意,记一下医学图像领域常用的两个metric:
$$
sensitivity=\frac{True Positive}{Positive}
$$
$$
specificity=\frac{True Negative}{Negative}
$$
Deep Learning for Chest X-rays Recognition
Paper: CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning
Deep Model尽管性能超群,但是Interpretability却非常差,尤其是AI在医学、金融等领域的应用,就会非常看重Interpretability(所以好多金融系统依然还在用规则,而非Machine Learning)。CheXNet是Andrew Ng团队的成果,基础idea是DenseNet做classification,CAM做可视化,来显示哪些区域是最discriminative的。
Clinical Skin Lesion Diagnosis using Representations Inspired by Dermatologist Criteria
Paper: Clinical skin lesion diagnosis using representations inspired by dermatologist criteria
这是一篇发表在CVPR’18上的文章,主要contribution是设计了一种novel的手工feature来进行skin disease recognition。该手工特征主要涉及Structure, Color, Shape。并且在SD-198 dataset上取得了State-of-the-art的效果。医学图像和我们常规的natural image不同,intra-class diversity非常大,我看了SD-198的图片,DNN实在是非常不好分。
- 对于Structure,由texture distribution来表示;主要通过multiple space的symmetry property来决定。
- 对于Color,通过ColorName来和skin lesion相关的color来表示;以及通过引入每种颜色的continuous value来区分颜色相同、但颜色程度不同的情况。
- 对于Shape,作者利用peripheral symmetry和constrained compactness来进行表示。
Criteria of Skin Disease
作者通过调研了大量skin lesion的文献,总结了skin diagnosis的ABCD criteria:
- A (Asymmetry): lesion shape, contour, colors and structures.
- B (Border): ill-defined and irregular border of lesion.
- C (Color variegation): skin lesion的color并非统一。
- D (Diameter): skin lesion的大致直径。
Medical Representations
介绍完了上面的ABCD criteria,下面我们直接来看本文的核心——medical representation。Medical representation可以通过如下方式生成:
- skin lesion的面积、直径(D)、边缘(B)由连通区域的像素点数量,以及主轴决定。
- A可由连通区域的geometric information决定。
- C可通过不同color space共同决定,这样可以保证即使有略微的颜色变化(例如illumination影响),依然具备discrimination。
下面我们来进行详细的讲解。
Structure Representation
Multi-Space Texture of Lesion (MST-L)
为了有效地表示skin lesion的structure,我们基于不同的color space来计算texture representation,来减少环境的影响。对于每一张clinical image $x$,我们提出了multi-space texture ($MST(x)$):
$$
MST(x)=[G_i(x)]_{i=1}^K
$$
$G_i(x)$代表从第$i$个color channel抽取的texture feature,$K$代表color space总数。在本文中,作者使用了3个color space,即Hue, Saturation, Brightness;并对每一个color space利用SIFT进行feature extraction。
Texture Symmetry of Lesion (TS-L)
skin lesion的不对称性也是个非常discriminative的特征。作者利用MBD+算法进行lesion region检测,然后根据主轴对检测出的区域划分为两个部分——$L(x)_1$和$L(x)_2$。然后对每个部分进行texture feature extraction,最后对第$i$个color space的texture symmetry进行如下表示:
$$
TS_i(x)=[G_i(L(x)_1), G_i(L(x)_2), S_i(x)]
$$
其中,$S_i(x)=\{|g_{ij}^1-g_{ij}^2|\}_{j=1}^d$,$d$代表抽取feature的dimension,$g_{ij}^1$和$g_{ij}^2$代表第$j$个entry $G_i(L(x)_1)$和$G_i(L(x)_2)$。我们在Hue space中进行texture symmetry度量,因为Hue space在不同light intensity情况下依然是scale-invariant + shift-invariant。
Color Representation
Color Name of Lesion (CN-L)
在$L\times a\times b$ space中,我们对每一个color bin计算pprobability vector $P=[p(C_l|c)]_{l=1}^M$:
$$
[p(C_l|c)]_{l=1}^M\propto \sum_i^N p(C_l|c_i)g^{\sigma}(|c_i-c|_{Lab})
$$
$c$代表color bin的original value,$c_i$代表$c$的Lab value,$N=387$代表color bin的总数,$C$代表basic colors set。$g^{\sigma}$代表$\sigma=5$的guassian kernel。作者通过对skin lesion的调研,设置$M=8$,$C=\{red, pink, purple, yellow, white, black, brown, blue\}$。最终lesion的color name $CN(x)$为:
$$
CN(x)=\mathop{argmax} \limits_{C_l}[p(C_l|c)]_{l=1}^M
$$
Continuous Color Values of Lesion (CCV-L)
除了CN-L,作者还对每个lesion设置了continuous value来代表color的不同程度。对于每个bin $c$,我们定义continuous color value $CCV(c)$:
$$
CCV(c)\propto p(C,c)\times \theta(c)
$$
其中$p(C,c)$代表将color bin $c$ 映射到其最近color name $C$的概率。$\theta(c)$代表pixel的权重值:
$$
\theta(c)=\sum_{|c|}n(c)u(c)
$$
$n(c)$代表图片中对于color的frequency,$u(c)$代表RGB space中color bin $c$的color value。
Shape Representation
对于形状特征,本文主要关注 (1) shape symmetry,(2) lesion的constrained compactness。
Peripheral Symmetry of Lesion (PS-L)
同样应用MBD+算法进行lesion region detection,划分等面积的两个部分$L(x)_1$和$L(x)_2$。然后计算两个parts lesion的peripheral symmetry:
$$
PS(x)=F(A(L(x)^1), A(L(x)^2))
$$
其中$A(\cdot)$代表从lesion中抽取的feature,$F(\cdot, \cdot)$代表concatenation operation。
Adaptive Compactness of Lesion (AC-L)
对于skin disease region,圆的近似程度对diagnosis非常有帮助。因此可以用如下方式来表示:
$$
Com=\frac{4\pi A}{P^2}
$$
$A$代表面积,$P$代表lesion的周长。
lesion的面积表示:
$$
A_L=\sum_{z\in L(x)}p(C|c,z)
$$
$z$代表lesion $L(x)$的像素,$p(C|c,z)$是在color name feature中将color映射到特定颜色类型的概率,$p(C|c,z)$反映了像素$z$位于lesion center的重要性。
实验结果表明,本文设计的特征比传统方法/DCNN都要好,metric为Accuracy和Sensitivity。
Reference
- Ding, Yiming, et al. “A deep learning model to predict a diagnosis of Alzheimer disease by using 18F-FDG PET of the brain.” Radiology (2018): 180958.
- Tajbakhsh, Nima, et al. “Convolutional neural networks for medical image analysis: Full training or fine tuning?.” IEEE transactions on medical imaging 35.5 (2016): 1299-1312.
- De Fauw, Jeffrey, et al. “Clinically applicable deep learning for diagnosis and referral in retinal disease.” Nature medicine 24.9 (2018): 1342.
- Kermany, Daniel S., et al. “Identifying medical diagnoses and treatable diseases by image-based deep learning.”30154-5?code=cell-site) Cell 172.5 (2018): 1122-1131.
- Gulshan, Varun, et al. “Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs.” Jama 316.22 (2016): 2402-2410.
- Rajpurkar, Pranav, et al. “Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists.” PLOS Medicine 15.11 (2018): e1002686.
- Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet Bien N, Rajpurkar P, Ball RL, Irvin J, Park A, et al. (2018) Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet. PLOS Medicine 15(11): e1002699. https://doi.org/10.1371/journal.pmed.1002699
- Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists Rajpurkar P, Irvin J, Ball RL, Zhu K, Yang B, et al. (2018) Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists. PLOS Medicine 15(11): e1002686. https://doi.org/10.1371/journal.pmed.1002686
- Esteva, Andre, et al. “Dermatologist-level classification of skin cancer with deep neural networks.” Nature 542.7639 (2017): 115.
- Codella, Noel CF, et al. “Deep learning ensembles for melanoma recognition in dermoscopy images.” IBM Journal of Research and Development 61.4 (2017): 5-1.
- Haofu, Liao, and Jiebo Luo. “A Deep Multi-Task Learning Approach to Skin Lesion Classification.” Workshops at the Thirty-First AAAI Conference on Artificial Intelligence. 2017.
- Yang, Jufeng, et al. “Clinical skin lesion diagnosis using representations inspired by dermatologist criteria.” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.
- Ge, Zongyuan, et al. “Skin disease recognition using deep saliency features and multimodal learning of dermoscopy and clinical images.” International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2017.